skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fritts, D C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A high‐resolution model in conjunction with realistic background wind and temperature profiles has been used to simulate gravity waves (GWs) that were observed by an atmospheric radar at Syowa Station, Antarctica on 18 May 2021. The simulation successfully reproduces the observed features of the GWs, including the amplitude of vertical wind disturbances in the troposphere and vertical fluxes of northward momentum in the lower stratosphere. In the troposphere, ship‐wave responses are seen along the coastal topography, while in the stratosphere, critical‐level filtering due to the directional shear causes significant change of the wave pattern. The simulation shows the multi‐layer structure of small‐scale turbulent vorticity around the critical level, where turbulent energy dissipation rates estimated from the radar spectral widths were large, indicative of GW breaking. Another interesting feature of the simulation is a wave pattern with a horizontal wavelength of about 25 km, whose phase lines are aligned with the front of turbulent wake downwind of a hydraulic jump that occurs over steep terrain near the coastline. It is suggested that the GWs are likely radiated from the adiabatic lift of an airmass along an isentropic surface hump near the ground, which explains certain features of the observed GWs in the lower stratosphere. 
    more » « less
  2. Abstract A very high‐spatial resolution (∼21–23 m pixel at 85 km altitude) OH airglow imager at the Andes Lidar Observatory at Cerro Pachón, Chile observed considerable ducted wave activity on the night of 29–30 October 2016. This instrument was collocated with a Na wind‐temperature lidar that provided data revealing the occurrence of strong ducts. A large field of view OH and greenline airglow imager showed waves present over a vertical extent consistent with the altitudes of the ducting features identified in the lidar profiles. While waves that appeared to be ducted were seen in all imagers throughout the observation interval, the wave train seen in the OH images at earlier times had a distinct leading nonsinusoidal phase followed by several, lower‐amplitude, more sinusoidal phases, suggesting a likely bore. The leading phase exhibited significant dissipation via small‐scale secondary instabilities suggesting vortex rings that progressed rapidly to smaller scales and turbulence (the latter not fully resolved) thereafter. The motions of these small‐scale features were consistent with their location in the duct at or below ∼83–84 km. Bore dissipation caused a momentum flux divergence and a local acceleration of the mean flow within the duct along the direction of the initial bore propagation. A number of these features are consistent with mesospheric bores observed or modeled in previous studies. 
    more » « less
  3. null (Ed.)
  4. Abstract The spectral model turbulence analysis technique is widely used to derive kinetic energy dissipation rates of turbulent structures (ɛ) from different in situ measurements in the Earth's atmosphere. The essence of this method is to fit a model spectrum to measured spectra of velocity or scalar quantity fluctuations and thereby to deriveɛonly from wavenumber dependence of turbulence spectra. Owing to the simplicity of spectral model of Heisenberg (1948),https://doi.org/10.1007/bf01668899its application dominates in the literature. Making use of direct numerical simulations which are able to resolve turbulence spectra down to the smallest scales in dissipation range, we advance the spectral model technique by quantifying uncertainties for two spectral models, the Heisenberg (1948),https://doi.org/10.1007/bf01668899and the Tatarskii (1971) model, depending on (a) resolution of measurements, (b) stage of turbulence evolution, (c) model used. We show that the model of Tatarskii (1971) can yield more accurate results and reveals higher sensitivity to the lowestɛ‐values. This study shows that the spectral model technique can reliably deriveɛif measured spectra only resolve half‐decade of power change within the viscous (viscous‐convective) subrange. In summary, we give some practical recommendations on how to derive the most precise and detailed turbulence dissipation field from in situ measurements depending on their quality. We also supply program code of the spectral models used in this study in Python, IDL, and Matlab. 
    more » « less
  5. Abstract A very high spatial resolution (∼25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind‐temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin‐Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987,https://doi.org/10.1029/JC092iC05p05231; 2002,https://doi.org/10.1002/qj.200212858307) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high‐resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020,https://doi.org/10.1029/2020JD033412) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows. 
    more » « less